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SUMMARY
This paper presents a model-based controller consisting of a feedback linearization scheme and a
state-dependent proportional derivative (PD) controller adapted to a parallel flight simulator Stewart
mechanism. This parallel robot is considered to emulate motions of highly maneuverable aircrafts,
which require well-trained pilots. The simulations are based upon a reduced-model prototype
built in order to verify kinematic design aspects and control laws. Indeterminacies in the mass
distribution of the system will generally affect model-based controllers, necessitating compensation
or the employment of robust control methods. Through introducing the pilot’s sensorial feedback of
acceleration, the pilot’s behavior in giving commands is emulated via an optimization process, which
tunes the controller coefficients accordingly. Stability of the designed control system is guaranteed
via the Lyapunov approach. To further explore the system through perilous flight scenarios, three
pre-designed maneuvers are selected as test cases. It is expected that closed-loop control tasks in
which a pilot tracks a target, while at the same time the controller rejects disturbances and adapts
itself to the pilot’s progressive skills, are ameliorated through this arrangement. Numerical results
show that the proposed method is found robust in the training process in conditions of parameters
indeterminacy.
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1. Introduction
Flight simulators provide an effective, efficient, and safe environment for training pilots in flight-
critical maneuvers that may be encountered in real situations. Most simulators are equipped with
a Stewart-type motion system, which consists of six linear actuators in a hexapod configuration,
providing a full six degrees of freedom (6-DOF) platform for mimicking flight motion and sustaining
the heavy mass of the simulator.

The argument for use of dynamic simulators is derived from the reproduction of motion cues
experienced during flight.1 It is undeniable that if pilots would train without any simulator motion,
relying only on display systems, the motion accelerations present in real flight could disorient the
pilot, affecting the performance or even entraining disastrous consequences. Therefore, flight simulator
motion systems have to faithfully reproduce aircraft motion experienced in flight via realistic visual
and vestibular feedbacks. The novelty of this paper lies in the following aspects. First, a model-based
controller consisting of a feedback linearization scheme and a state-dependent proportional derivative
(PD) controller is adapted to a parallel flight simulator mechanism. Then, through introducing the
pilot’s sensorial feedback of acceleration, the pilot’s behavior in giving commands is emulated via
an optimization process, which tunes the controller coefficients accordingly. It is expected that
closed-loop control tasks in which a pilot tracks a target, while at the same time the controller
rejects disturbances and adapts itself to the pilot’s progressive skills, are ameliorated through this
arrangement.
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Fig. 1. Prototype of the Stewart platform with rotary actuators.

Compared with serial ones, parallel manipulators have relative advantages in terms of high stiffness,
accuracy, and speed, thus enabling a vast range of applications like pick-and-place operation in
electronic industry, precision machining, or multi-axis heavy duty testing jacks.2 The key issues are
the ways to meet the demand of high accuracy in addition to high speed and heavy load. Parametric
uncertainties and highly coupled dynamics, respectively, due to payload variations and unmodeled
interactions, such as links flexibility, friction, or actuators backlash, make the controller difficult
to design. In the present case, the fidelity of the simulator in mimicking motion while inducing
the physical feeling of piloting an aircraft depends mainly on the mechanism maneuverability and
requires special controller attributes. Historically, Stewart platform was originally designed as a
six-linear jack system for simulating flight conditions and training pilots.3 Later, the mechanism
was used as a robot wrist and a tendon actuated in form of parallel manipulators. Since then,
several types of this mechanism have been proposed. Rotary Hexapods are more recent and peculiar
designs of such parallel manipulators and were introduced by Hexel Crop.4 Among different versions
of Hexapods,5−8 a new mechanism type called Pierrot’s HEXA is considered in this paper. The
mechanism is recognized as more efficient than its prismatic counterpart for accelerating the moving
platform to required jerk levels while executing aggressive large magnitude maneuvers. As shown
in Fig. 1, the mechanism consists of six articulated legs joined to a common platform plate. The
lower links are connected to the base by revolute joints and the upper links are connected to the
moving plate by universal joints. Upper and lower links are connected to each other by spherical
joints.

The control strategies of parallel manipulators are generally divided in two schemes: decentralized
and distributed control strategies. In the first control strategy, individual legs of the parallel
manipulator are assumed as independent entities and the coupling effect from other legs is
considered as a disturbance.9 Although easily implemented in parallel to reduce computation load,
nonetheless without synchronization, there is no guarantee that the group of decentralized individual
controllers will prove stable in performing high-performance tasks. On the other hand, distributed
control strategies are based on task space error fed back to an unified controller.10,11 Unlike
the decentralized strategy, the dynamic coupling of manipulators is taken into account in order
to compensate the nonlinear dynamics of the parallel robot and hence permits to achieve better
performance.

Many researchers utilized a PD controller plus a gravitation compensation, linear and nonlinear
synchronized Proportional-Integral-Derivative (PID) controller for individual position control of
parallel manipulators.12−16 Davliakos and Papadopoulos have developed a model-based controller
for a 6-DOF hydraulically driven Stewart platform.17 The dynamic model contained the rigid body
equations of the Stewart mechanism augmented by the hydraulic dynamics of the actuators. Another
approach consisted of a nonlinear input–output linearization control method.18 The control law
included a PD part driving the tracking error to zero exponentially. Moreover, the same authors
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designed a novel model-based impedance controller19 for dealing with the electrohydraulic servo-
actuators and compared the results with those obtained previously from the PD controller. The results
of impedance controller were relatively superior, showing more smoothness during interaction with
the environment.

Zubizarreta et al. implemented an extended computed torque controller on a 6-DOF UPS kinematic
chain of the Stewart platform.20 A sensitivity-based analysis was performed on the mechanism to
increase the robustness and performance of the control law. An adaptive sliding mode controller was
proposed by Dongsu and Hongbin for a 6-DOF Stewart platform.21 The uncertain constant parameters
were on-line estimated by the adaptive control part and the time-varying uncertain parameters,
perceived as external disturbances, were compensated by the sliding mode part. Ting et al. relied on
Lyapunov theory to prove the stability of a PID controller optimally tuned by genetic algorithm (GA).22

Experimental results done in the presence of external load conditions showed that a satisfactory level
of accuracy was maintained. Omran and Kassem proposed a similar optimization method to tune the
parameters of a PD controller applied on a 6-DOF Stewart platform.23 Controller gains were tuned to
minimize the acceleration jerk delivered to the pilot according to mission characteristics imbedded
into the cost function. Yang et al. analyzed, both theoretically and experimentally, the performance of a
PD controller with gravity compensation on a 6-DOF hydraulic parallel manipulator.24 The hydraulic
system was decoupled by local velocity compensation via inner control loops, proving satisfying
results in terms of stability, robustness, and accuracy.

Among the multitude of research works done in the past decade related to the control of various
versions of Gough-Stewart platforms, the rotary actuated system is still moderately studied. Azizan
et al. designed a stable model-based fuzzy controller for this type of manipulator.25 Stability of the
controller has been guaranteed via the Lyapunov approach. Eftekhari et al. presented the adaptability
of a neuro-adaptive fuzzy controller on a platform designed to transport loads of unknown inertia.26

The effectiveness of the neuro-fuzzy system has been approved by performing multiple maneuvers
and its robustness was checked under various inertia loads.

One of the promising control methods enabling to compensate for uncertainties is the nonlinear PID
control approach.27 Many authors have proposed the control of the Stewart platform using sliding
mode control but in practical applications, those conventional controllers show certain drawbacks
including chattering and the lack of robustness to unmatched uncertainties. In this paper, a nonlinear
augmented proportional plus derivative controller is proposed to deal with a 6-DOF Stewart platform
with revolute actuators designed to emulate highly maneuverable aircrafts. The dynamic model of
the system, consisting of interconnected rigid bodies, is built using Lagrange’s method and becomes
unconstrained through projecting the equations on the tangent to the constrained manifold. The next
step consists of optimal gain selection for the nonlinear PD (NPD) controller. Various methods have
been proposed to handle systems with matched and unmatched uncertainties. However, in the present
case, GA is used to optimally select the gains according to the fulfillment of prerequisite conditions.
Stability of the designed controller is guaranteed via Lyapunov approach. Fidelity of the simulator in
recreating flight conditions can be supplemented by estimating the pilot’s perception of flight through
mathematical models fitted to the measured pilot’s reactions. A tracking mission with pilot in the
loop can serve to assess the effect of human factor and to conceive how to compensate for it without
affecting system performance.

2. Manipulator Equations of Motion

2.1. Kinematics model
As shown in Fig. 2, the motion of the moving platform is described by two frames: an inertial
frame (X,Y, Z ) attached at the center of the footing base with unit vectors (Î, Ĵ, K̂) and a body
frame (xp, yp, zp) attached at the center of moving platform with unit vectors (Îp, Ĵp, K̂p), where
the zp axis is pointing outward. Other complementary coordinate systems (xn, yn, zn) , n = 1, 2 . . . 6
and (x′

n, y′
n, z′

n) , n = 1, 2 . . . 6 are attached, respectively, to the bottom and upper links with unit
vectors(în, ĵn, k̂n) and (î′n, ĵ′n, k̂′

n), n = 1 . . . 6.
The moving platform has three translational and three rotational degrees of motions. The rotational

motions of the moving platform are defined in a sequence of Euler angles (θ, ϕ, ψ ), respectively, pitch,
roll, and yaw about the y, x, and z body axes. The transformation of the body frame (xp, yp, zp) relative
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Fig. 2. 6-DOF model of the parallel Stewart manipulator.

to the inertial frame (X,Y, Z ) is thus given by the following rotation matrix:

RI
P =

⎡
⎣ Cθ 0 Sθ

0 1 0
−Sθ 0 Cθ

⎤
⎦×

⎡
⎣1 0 0

0 Cϕ −Sϕ

0 Sϕ Cϕ

⎤
⎦×

⎡
⎣Cψ −Sψ 0

Sψ Cψ 0
0 0 1

⎤
⎦

=
⎡
⎣ CθCψ + SθSϕSψ −SψCθ + SθSϕCψ SθCϕ

CϕSψ CϕCψ −Sϕ

−SθCψ + CθSψSϕ SθSψ + CθSϕCψ CθCϕ

⎤
⎦ (1)

where C and S denote cosine and sinusoid functions, respectively. Bottom links possess one rotational
degree of freedom, while upper links hold twice. The rotation sequence of the bottom links starts
by rotating around the z-axis with a fixed posture angle αn, followed by a variable βn rotation about
yn-axis. The transformation matrix, RI

n, from frame (xn, yn, zn), n = 1, 2 . . . 6 to the inertial frame
(X,Y, Z ) is obtained as

RI
n =

⎡
⎣Cαn −Sαn 0

Sαn Cαn 0
0 0 1

⎤
⎦×

⎡
⎣ Cβn 0 Sβn

0 1 0
−Sβn 0 Cβn

⎤
⎦ =

⎡
⎣CαnCβn −Sαn Cαn Sβn

SαnCβn Cαn Sαn Sβn

−Sβn 0 Cβn

⎤
⎦ n = 1, 2, . . . , 6

(2)
The rotation sequence of the upper links starts from rotating around the zn-axis by an angle

γn, followed by a rotation about the y′
n-axis by an angle λn. The transformation matrices from

(x′
n, y′

n, z′
n), n = 1, 2 . . . 6 to the corresponding (xn, yn, zn), n = 1, 2 . . . 6 and then with respect to

the absolute frame (X,Y, Z ) are given as

Rn
n′ =

⎡
⎣Cγn −Sγn 0

Sγn Cγn 0
0 0 1

⎤
⎦×

⎡
⎣ Cλn 0 Sλn

0 1 0
−Sλn 0 Cλn

⎤
⎦ =

⎡
⎣CγnCλn −Sγn Cγn Sλn

SγnCλn Cγn Sγn Sλn

−Sλn 0 Cλn

⎤
⎦ n = 1, 2, . . . , 6 (3)

RI
n′ = RI

nRn
n′ (4)
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By referring to Fig. 2, the constraint equations, kinematically relating the variables to each other,
can be written as follows:

(⇀rp − ⇀rbn) + (⇀pn − ⇀rn − ⇀r′
n) = 0 (5)

where ⇀rp and ⇀rbn, respectively, denote position vectors of the platform center and revolute joints
expressed in inertial frame (X,Y, Z ). ⇀pn is the position vector of universal joints expressed in
body frame (xp, yp, zp), ⇀rn and ⇀r′

n are the position vectors of bottom and upper link’s extremities,
respectively, in (xn, yn, zn), n = 1, 2 . . . 6 and (x′

n, y′
n, z′

n), n = 1, 2 . . . 6 coordinate systems.
Equation (5) can be rewritten in coordinate form with respect to the inertial frame (X,Y, Z ):

(rp − rbn ) + (RI
ppn − RI

nrn − RI
n′r′

n) = 0 n = 1, 2, . . . , 6 (6)

where components of rp, rbn, pn, rn, and r′
n are represented as

rp =
⎡
⎣Xp

Yp

Zp

⎤
⎦ , rbn =

⎡
⎣Xb

Yb

0

⎤
⎦ , pn =

⎡
⎣xpn

ypn

0

⎤
⎦ , rn =

⎡
⎣ln

0
0

⎤
⎦ , r′

n =
⎡
⎣l

′
n

0
0

⎤
⎦ n = 1, 2, ..., 6 (7)

Equation (6) is obtained in the form of 18 algebraic equations as

fi(q) = 0i = 1, 2, . . . , 18 (8)

where q is the generalized coordinate vector constituted of

q = [
XpYpZp θ φ ψ β1 β2 β3 β4 β5 β6 γ1 γ2 γ3 γ4 γ5 γ6 λ1 λ2 λ3 λ4 λ5 λ6

]T
(9)

The forward kinematic of the mechanism is obtained by integrating with respect to time the kinematic
constraints purposely cast in a differential form but inverse kinematics can be solved algebraically as
well as via integration. The explicit solution to the inverse kinematic problem can be obtained from
the constraint equations formed by the closed chain of links. It suffices to obtain the length of ith
upper link (i.e. l ′

n) in terms of kinematic variables related to each leg:

∥∥∥∥O
⇀

Pn −
⇀

b′
n

∥∥∥∥ = l ′
n n = 1, 2, . . . , 6, OPn =

⎡
⎣Pnx

Pny

Pnz

⎤
⎦ (10)

As shown in Fig. 2, O
⇀

Pn and
⇀

b′
n are, respectively, position vectors of the universal and spherical joints

in the inertial frame. By doing some algebraic manipulations, the initial configuration variables in
terms of inputs result to

αn = tan−1

(
⇀rbn .Ĵ

⇀rbn · Î

)
n = 1, 2, . . . , 6 (11)

βn = tan−1

(
A ±

√
(B2 − 4AC)

2A

)
n = 1, 2, . . . , 6 (12)

γn = tan−1

(
⇀rn · ĵn
⇀rn · în

)
(13)

λn = tan−1

⎛
⎝ ⇀r′

n · k̂′
n√

(⇀r′
n · ⇀

j′n)
2 + (⇀r′

n · ⇀

i′n)
2

⎞
⎠ (14)



www.manaraa.com

Emulation of pilot control behavior across Stewart platform simulator 593

where

A = 2ln cos(αn)Xb + 2ln sin(αn)Yb + 2Pnxln cos(αn) + 2lnPny sin(αn) (15)

B = 2lnPnz + 2Zbln (16)

C = l ′2
n − l2

n − P2
nx − P2

ny − P2
nz − X 2

b − Y 2
b − Z2

b + 2PnxXb + 2PnyYb + 2PnzZb (17)

and where ln is the length of ith bottom link and Xb, Yb , and Zb are the position coordinates of the
revolute joints in the inertial frame (X,Y, Z ).

By differentiating Eq. (8), the equations can be written in matrix form as

Aq̇ = 0 (18)

where A = ∂ f
∂q is the Jacobian matrix. By splitting the generalized coordinate vector q into u =

[Xp Yp Zp θ ϕ ψ]T, V1 = [β1 β2 β3 β4 β5 β6]T, V2 = [γ1 γ2 γ3 γ4 γ5 γ6 λ1 λ2 λ3 λ4 λ5 λ6]T arrays and
assuming that A can be partitioned correspondingly, we obtain[

u̇
V̇2

]
= −[Au Av2

]−1
Av1V̇1 (19)

In forward kinematics, taking integral from Eq. (19) results in output arrays u and V2 whenever
the input array V1 is given as a function of time. Whenever the array u is given as a function of time,
the arrays V = [V1, V2]T can be obtained by taking integral from the following equation:

V̇ = −A−1
v Auu̇ (20)

Initial conditions for Eq. (20) can be obtained from Eqs. (11)—(14). Equation (20) will be utilized
in Section 3 for obtaining the reduced-order governing equations.

3. Dynamic Model
Since the parallel robots are mostly used in applications requiring high accuracy and high-speed
motions, deriving the equations of motion through an accurate model of the robot is primarily
important. In recent years, many research works have been conducted on the dynamics of parallel
manipulators,28,29 with consideration on computational efficiency and accuracy in the presence of
kinematic constraints. In this section, the equations of motion of the Stewart platform are obtained
through a Lagrangian formulation.28 The detailed expressions of derived equations are given in the
appendix. Cutting the parallel manipulator at their common point, one arrives to an open-chain system
including six independent serial manipulators. The dynamic model of the whole parallel manipulator
can be formulated by combining the dynamics of those serial manipulators under the closed-loop
constraints. The governing equation of the constrained dynamical systems can be expressed typically
as

Mq̈ + h(q, q̇) − ATρ + B� = 0 (21)

In the above equations, M = M(q) is the generalized inertia matrix, A = A(q) is the Jacobian
matrix of constraints, B = B(q) is the coefficient matrix of the external forces, h = h(q, q̇) is the
nonlinear terms vector, ρ is Lagrange’s coefficient vector, and � = [τ1, τ2, τ3, τ4, τ5, τ6]T is the vector
of actuation torques. For simulation and control design processes, independent equations of motion are
required. Moreover, it is necessary that the Lagrange’s coefficient vector be removed from equations.
The standard approach consists of projecting the equations on the space tangent to the constrained
manifold by pre-multiplying Eq. (21) into the orthogonal complement of matrix AT (finding the
null-space of matrix A), yielding to equations freed of Lagrange’s multipliers:30

M̃q̈ + h̃(q,q̇) + B̃� = 0 (22)
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In the above equations, M̃ = (Ac)TM, B̃ = (Ac)TB, h̃ = (Ac)Th. Ac is the complementary
orthogonal matrix (i.e. AAc = 0). The inverse dynamics problem is to determine the external actuation
vector or � in terms of the command motion (i.e. q(t )). In the forward dynamic problem, the matrix
M̃ and the vector q in Eq. (22) can be partitioned according to pre-defined task variables u and joint
variables V. Using constraint equations Eq. (20) in combination with Eq. (22), a new form of the
equations can be derived in which the second derivative of the dependent variables is replaced in
terms of the independent acceleration variables. As a first step, matrix M̃ and vector q in Eq. (22)
have to be partitioned accordingly:

M̃uü + M̃vV̈ + h̃(q,q̇) + B̃� = 0 (23)

Then, by differentiating Eq. (20) and substituting in Eq. (23), equations will yield to the following
compact form:

M̄ü + h̄(q, q̇) = B̄� (24)

where M̄ = M̃u − M̃vA−1
v Au, h̄ = h̃ − M̃vA−1

v Ȧq̇, B̄ = B̃.
Considering Eq. (24), the solution to the forward dynamics problem can be attained via integrating

those equations for the six independent variables of the system. Through them, the 18 remaining
variables of the mechanism can be calculated via forward and inverse kinematics relations.

3.1. Dynamic model validation
Any mechanical system without any dissipative agent conserves energy over time or is
increasing/decreasing to the amount of work done on it in this interval. In order to verify the correctness
of the equations of motion, an indirect way is to check whether or not this conservation principle
applies. In the present case, validation of the dynamic model of the Stewart platform can be verified
by investigating whether the work integration expression until time t,

W =
∫ t

t0

τ q̇ dt (25)

is balanced with the sum of kinetic and potential energies at that instant:

T = Tplatf + Tlinks, U = Uplatf + Ulinks,

Tplatf = 1
2 mpV 2

p + 1
2ωT

p Ipωp, Tlinks = 1
2

N∑
i=1

miV 2
i + 1

2

N∑
i=1

ωT
i Iiωi

(26)

where Tp and Up are the kinetic and potential energy of the moving plate and Tlinks and Ulinks are the
kinetic and potential energy of the links, respectively. The result presented in Fig. 3 is comparing
the evolution of those scalar values with each other. The fluctuation in energy level is due to the
work accomplished by the actuators in following the commands consisting of twisting motion of the
platform at a constant maintained elevation, in a repetitive manner as shown in Fig. 4. The negligible
difference between work and total energy verifies that the work–energy principle is fulfilled, validating
the model correctness. The trend has been repeated for few cycles to make sure that numerical error
accumulation is not pronounced.

4. Nonlinear PD Compensator in Task Space
Model-based controllers such as computed torque attempt to linearize the system through feedback
of the nonlinear terms. The remaining tracking error due to various sources of error is eliminated by
a linear PD control. However, in practice, robustness against modeling error or external disturbance
depends on the extent of uncertainty. The acceptable level of error in pose variables and derivatives
is determined by the consequence of such discrepancies in flight maneuvers’ accuracy which is
much more pronounced in real flight conditions because of its effects on induced aerodynamics
forces magnitude. Hence, the aptitude in following commands with the highest fidelity cannot be
underestimated but the sensitivity depends particularly on the flight speed. Other factors such as
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Fig. 3. Comparison of total energy and work evolution.

Fig. 4. Snapshots of the twisting motion of the platform about the z-axis at equal intervals of time (images 1–5
represent the first phase of motion and 6–9 its reverse).
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Fig. 5. Block diagram of Stewart platform with pilot in the loop.

motion and vision clues can help the pilot in reestablishing from stall to steady flight conditions.
Figure 5 illustrates the pilot-in-the-loop block diagram which is considered here.

In order to improve the control accuracy and disturbance rejection ability, a combination of the
NPD control with the conventional control strategies is employed on the platform. It is important
to note that the method will be assorted to constrained dynamic systems based on the independent
reduced form of governing equations.

In traditional computed torque controller (CTC), one term is dedicated to the dynamics
compensation defined by the desired trajectory and the second term is devoted to tracking error
elimination. Reconstituted, the input control torque results

� = B̄−1
{
M̄
[
üd + Kv.(u̇d − u̇) + Kp.(ud − u)

]+ h̄
}

(27)

Indeed, this control law expressed in task space is formatted to fit in Eq. (24) of Stewart platform,
which upon substitution and noting that M̄ is a positive definite matrix yields to

ë + Kv ė + Kpe = 0
e = ud − u (28)

where u is the task space vector obtained from the actuated joint space state [β1 β2 β3 β4 β5 β6]T and ud

is the desired task space vector. Root locus and state space feedback linearization are common methods
which are used to design the controller. However, as mentioned, the CTC is not robust against uncertain
factors, such as modeling error and friction. To overcome this problem, the nonlinear computed torque
(NCT) controller is designed by replacing the linear PD internal loop controller in CTC with the NPD
algorithm. In simple terms, the NPD controller has a similar structure as its linear counterpart, namely
any control structure of the form

τ (t ) = kp (.) e (t ) + kd (.) ė (t ) (29)

where kp(.) and kd (.) are state-dependent or time-varying proportional and derivative gains. The
superiority of NPD controller in tracking and disturbance rejection relies on its generality compared
with the linear PD controllers as can be obviously recognized through its definition:2

kp (e) =
{

kp|e|α1−1 |e| > δ1

kpδ1
α1−1 |e| ≤ δ1

(30)

kv (ė) =
{

kv|ė|α2−1 |ė| > δ2

kvδ2
α2−1 |ė| ≤ δ2

(31)
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where α1 and α2 can be determined in the interval [0.5, 1.0] and [1.0, 1.5], respectively. The particular
choice of exponents changes the response characteristics but is proven to keep the system stable.

By replacing the gains with state-dependent gains in the control law (Eq. (27)), we get

� = B̄−1
{
M̄
[
üd + Kv (ė)(u̇d − u̇) + Kp(e)(ud − u)

]+ h̄
}

(32)

and inserting it into the dynamic model Eq. (22), the closed-loop system is obtained:

ë + Kv (ė)ė + Kp(e)e = 0 (33)

where Kv (ė) and Kp(e) are defined purposely as

Kv (ė) = diag(kv1 (ė1) , kv2 (ė2) , kv3 (ė3) , kv4 (ė4) , kv5 (ė5) , kv6 (ė6)) (34)

Kp(e) = diag(kp1 (e1) , kp2 (e2) , kp3 (e3) , kp4 (e4) , kp5 (e5) , kp6 (e6)) (35)

where kvi, kpi, i = 1, 2, . . . 6 are positive constant gains and ei, i = 1 . . . 6 determine the task space
error variables. In the present problem, the parameters α1, α2, δ1, δ2, kpi, and kvi are tuned by GA. The
main point of the controller design procedure is to determine the parameters such that the closed-loop
control system, Eq. (33), is stable. Thus, a Lyapunov function candidate2 is chosen as

V (e, ė) = 1

2
ėTė +

e∫
0

|ξ |TKp(ξ )dξ (36)

where
∫ e

0 |ξ |TKp(ξ )dξ = ∑6
i=1

∫ ei

0 |ξi|kpi(ξi)dξi. Obviously, the first term in Eq. (36) is positive
definite and the second term is positive definite according to the following lemma.

Lemma:27 Consider the continuous diagonal matrix Kp : R2 → R6×6 and assume that
there exist class K functions αi(.) such that |x|kpi(x) ≥ αi(|x|), x ∈ R, i = 1, 2, . . . 6,
then

∫ e
0 |ξ |TKp(ξ )dξ > 0, ∀ e 	= 0 ∈ R2 and

∫ e
0 |ξ |TKp(ξ )dξ → ∞ as |e| → ∞

Differentiating V (e, ė) with respect to time yields

V̇ (e, ė) = ėTë + eTKp(e) ė (37)

Multiplying both sides of the closed-loop system Eq. (33) by ėT, one obtains ėTë + ėTKv (ė)ė +
ėTKp(e)e = 0. Paying attention to the fact that Kp(e) is a diagonal matrix andėTKp(e)e = eTKp(e)ė,
substituting this last expression into Eq. (37) results in

V̇ (e, ė) = −ėTKv (ė)ė (38)

As Kv (ė) is a diagonal positive definite matrix so V̇ becomes negative semi-definite. By defining

the state-space variables (
e
ė) and considering Eq. (33) as an autonomous system, V̇ 	= 0 along any

solution of the differential equation except the origin. Hence, there is no invariant set corresponding
to V̇ = 0 and therefore the closed-loop system is asymptotically stable to the origin according to
LaSalle’s theorem.31

4.1. Criterion for pilot’s sensorial feedback
One of the objectives of this research is to search optimal values for the controller gains
kp, kv, α1, α2, δ1, and δ2. The controller gains are optimally tuned based on the position and orientation
deviation of the moving platform measured during a determined lapse of time. Optimal gain tuning can
improve the tracking performance and accuracy of the manipulator but has to repeat the optimization
process for each maneuver profile. According to that the flight simulator is expected to emulate the
physical conditions of flight as realistic as possible, a good practice may consist to stimulate the
pilot’s sensorial feedback of translational and rotational accelerations, bringing him clues to react
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handily in different eventual scenarios. For achieving such purpose, the sum of the weighted integral
of acceleration error is considered as cost function which is defined as

Fcost =
6∑

n=1

wn

∫ tspan

0

∣∣∣∣d2en(t )

dt2

∣∣∣∣dt n = 1, 2, . . . , 6 (39)

where ei , i = 1, 2 . . . 6 are defined as

e1 = xd − x, e2 = yd − y, e3 = zd − z, e4 = θd − θ, e5 = φd − φ, e6 = ψd − ψ (40)

Scaling factors wn are tuned to normalize the acceleration error in order that the summation of
different physical values becomes meaningful to minimize.

4.2. Optimal weight tuning via genetic algorithm
Evolutionary algorithms (EAs) have found application as optimization techniques in different areas of
engineering.32 These algorithms are derivative free and stochastic-based methods being inspired from
the theory of natural evolution.33 In the present work, GA as one ramification of EAs algorithms is
utilized to optimize tracking performance with respect to controller parameters.23 Fitness evaluation,
selection, cross-over, and mutation are GA operators which are applied to individuals (i.e. solutions)
of population repeatedly in the main loop of GA until the final generation of individuals is generated.
This final population breeds the local optimal solution in an optimization problem. In the conventional
process of optimization, there is no indication that an absolute extremum state has been reached. In the
present case, there is also no clue to find out whether the problem is convex. Nonetheless an obvious
advantage in this approach compared to gradient descent methods is that the search is not based on
gradient information, and has therefore, no requirements on the continuity or convexity of space. In
fact, by introducing gene mutation, the odds of getting stuck in a local minimum is reduced as this
anomaly adds to the diversity of the specimens and by this way, a number of points out of the vicinity
range will also be systematically investigated to get out of eventual local minima.

Among real and binary-coded types of GA, the former one is used to encode the PD tuning
parameters in each chromosome (individual) and the value of Eq. (33) serves as fitness function.

5. Results and Discussion
The optimal process of tuning controller gains is evaluated according to values tabulated in Tables I
and II, specifying the attributed GA algorithm characteristics and the Stewart platform parameters,
respectively. Results contain the linear and nonlinear computed torque controller and those obtained
by an adaptive neuro-fuzzy controller.26 The performance of the controller is tested for three desired
trajectories. The parametric equations of these trajectories are considered as

Path 1 :
xd = yd = 0,

zd = z0 + a sin(ωt ), z0 = 0.346, a = 0.1, ω = π (rad/s),
θ = φ = ψ = 0

(41)

Path 2 :
xd = 0.01 − 0.01 × cos(πt ),
yd = 0.01 × sin(πt ),
zd = z0, z0 = 0.346,

θ = φ = ψ = 0

(42)

Path 3 :
xd = 0, yd = 0, zd = z0, z0 = 0.346,

θ = (π/36) × sin(πt ),
φ = (π/36) × sin(2πt ),
ψ = 0

(43)
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Table I. GA settings applied in this study.

Selection Cross-over Mutation Cross-over Mutation Population Max. no.
type type type rate probability size of generation

Tournament Arithmetic Uniform 0.75 0.02 100 100

Table II. System’s parameters.

Mass of bottom link m = 0.039(kg) Length of bottom link l = 0.18(m)

Mass of upper link m′ = 0.065(kg) Length of upper link l ′ = 0.3(m)
Mass of moving platform mp = 1.5(kg)

Table III. Linear torque controller coefficients.

kv1 kp1 kv2 kp2 kv3 kp3 kv4 kp4 kv5 kp5 kv6 kp6

Path 1 60.55 916.57 74.33 1381.22 93.49 2185.08 38.34 367.44 56.77 805.65 65.62 1076.48
Path 2 150.55 5666.32 129.22 4174.40 160.33 6429.39 76.34 1456.9 186.77 8720.74 197.08 9710.12
Path 3 90.55 2049.82 69.22 1197.80 90.33 2039.84 97.34 2368.68 86.77 1882.24 75.08 1409.24

5.1. Application of the controller
The proposed optimization algorithm is applied to the Stewart platform by generating random initial
populations of the controller gains for the linear and nonlinear computed torque controllers. The
algorithm converges to optimal gain values which depend on the desired maneuver, as indicated in
Tables III and IV for the linear and nonlinear controllers, respectively. The optimal values of controller
parameters are given in the following.

Corresponding solution diagrams are depicted in Figs. 6–11. Figure 6 shows the time history of the
moving platform coordinates in following trajectory 1, which consists of an ascending/descending
maneuver in an oscillating pattern. The order of maximum position error is about 10−3(m) and the
order of maximum rotation is 0.1 degree, which is quite adequate for flight simulator applications.
Translation in the z-direction perfectly coincides with the desired trajectory.

Figure 7 shows the platform position and rotation time history for trajectory 2. The desired trajectory
represents a turning maneuver which is pursued with a maximum deviation equal to 10−3(m) for
position and 0.06 (deg) for rotation. The third desired trajectory is defined as a simultaneous rocking
motion of the platform about its x and y axes, shown in (Fig. 8). Optimal values of kv and kp for
NCT controller are presented in Table IV. In comparison to optimal values of CTC cited in Table
III, the values of NCT controller in Table IV decreased substantially within the interval (0–100),
while also displaying a lower error percentage in trajectory tracking. The same trend is repeated for
other trajectories, showing a relative supremacy of the NCT controller in comparison to its linear
counterpart on precision enhancement and control effort.

For the sake of completeness, the simulation results of proposed NCT controller on an RSU
platform are compared with the simulation results of a neuro-fuzzy adaptive controller that was
accomplished in previous works.26 As shown in Fig. 9, the position error of the platform is presented
in following trajectory 1 with two simulated controllers: (a) neuro-fuzzy adaptive controller and (b)
NCT controller. Error magnitude of the NCT controller did not change significantly in comparison
to neuro-fuzzy adaptive controller. Similar results are obtained for trajectories 2 and 3. However, in
comparison to neuro-fuzzy adaptive controller, NCT controller is found more robust against uncertain
parameters such as platform mass. Figure 10 shows the simulation results of NCT controller when
the moving plate mass is increased from 1.8 kg to 5 kg. It is worth to mention that the neuro-fuzzy
adaptive controller26 could not track the desired trajectory when encountered with a mass discrepancy
higher than 3 kg.
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Table IV. Nonlinear torque controller coefficients.

kv1 kp1 kv2 kp2 kv3 kp3 kv4 kp4 kv5 kp5 kv6 kp6 α1 α2 δ1 δ2

Path 1 62.55 978.12 71.33 1272.00 90.49 2047.1 42.34 448.16 58.77 863.47 67.62 1143.1 0.91 1.46 0.03 0.3
Path 2 54.53 743.92 76.20 1452.30 60.3 909.89 86.34 1863.6 96.8 2341.1 33.01 273.57 0.95 1.21 0.03 0.03
Path 3 50.85 646.43 30.25 228.76 29.85 222.75 32.45 263.25 33.48 280.22 25.08 157.25 0.85 1.47 1.47 0.08
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Fig. 6. Position and rotation of moving platform for trajectory 1.

Fig. 7. Position and rotation of moving platform for trajectory 2.

For assessing transient performance in following sudden changing commands, a unit-step elevation
is entered as input to the linear and nonlinear computed torque controllers’ loop with results compared
in Fig. 11.

5.2. Effect of pilot behavior on control
For identifying pilot control behavior, the effect of the pilot has been implemented into the controller
loop in order to simulate a more realistic situation. As illustrated in Fig. 5, the scheme indicates that
pilots rely both on visual and motion cues to generate commands for the control task, although the
latter is barely used in low bandwidth conditions. For the identification of pilot control behavior, the
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Fig. 8. Position and rotation of moving platform for trajectory 3.

Fig. 9. Position error for RSU platform for neuro-fuzzy adaptive controller and NCT controller.

pilot block representing his visual response to tracking error is denoted byHe, which is given as

He = e−T s

tlags + 1
(44)

where T is defined as the pilot visual perception time delay and the equalization characteristics of the
pilot is presented by the lag constant tlag . The model of the visual response is based on the work by
Nieuwenhuizen and Bulthoff1 and is simplified in this paper. The error feedback that is supplied into
the controller is obtained and filtered by the pilot block as follows:

e = He ereal, ereal = udesired − u (45)
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Fig. 10. Position, rotation, and velocity of moving platform for trajectory 1 with different payloads (mp = 1.8 kg
and mp = 5 kg ).

Fig. 11. Position, rotation, and velocity of moving platform in pursuing a step command.

This will permit to understand the role of pilot’s reactions against extreme flight conditions and to
eventually compensate for the attenuated performance in real application. The simulation results
for trajectory 1 are presented in Fig. 12, showing an acceptable level of errors despite erroneous
feedbacks.

6. Conclusions
In this paper, an optimal NPD compensated torque controller was designed for a Stewart-type parallel
manipulator developed as a flight simulator. The asymptotic stability of the parallel manipulator system
controlled by the NCT controller was also proven. Parameters of the controller were optimized using
GA algorithm. Cost function was defined as a summation of integral acceleration error. The proposed
algorithm obtained optimal values for the linear and nonlinear computed torque controller parameters.
Simulation measurements of the controller were presented in numerical results.

The following results are obtained from the numerical results.
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Fig. 12. Position, rotation, and velocity of moving platform with pilot control behavior (trajectory 1).

1. Optimal gain values of NCT controller are found smaller than the optimal values of CT controller,
resulting in reduced control effort.

2. Compared with CT controller and neuro-fuzzy adaptive controller, the NCT controller is found
robust against the uncertain factors of modeling error. As shown, the controller can still track the
desired trajectory even if the platform mass is substantially varied from nominal values.

3. A transfer function has been considered for inserting the pilot in the loop in order to evaluate the
effect of human sensory on the tracking performance. The controller was able to compensate for
this effect.
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Appendix
The dynamic equations of the Stewart platform are derived following Lagrangian formulation as

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= Qnc,i + (

ATρ
)

i, i = 1, . . . ,n

Qnc,i =
NF∑
j=1

→
Fnc, j · ∂

⇀
r j

∂qi
+

Nτ∑
j=1

τnc, j .
∂

⇀
ω j

∂ q̇i
,

L = T − U

(A1)

where q is the generalized coordinate vector constituted of

q = [
XpYpZp θ φ ψ β1 β2 β3 β4 β5 β6 γ1 γ2 γ3 γ4 γ5 γ6 λ1 λ2 λ3 λ4 λ5 λ6

]T
(A2)
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The kinetic energy and potential energy T and U of the constrained system, respectively, are evaluated
as follows:

T = Tp +
6∑

n=1
Tn + T ′

n

T = 1
2 (mp

⇀

Vp ·
⇀

Vp + ⇀

ωp ·
↔
I p · ⇀

ωp +
6∑

n=1

(
⇀

ωn ·
↔
In · ⇀

ωn + m′
n

⇀

V
′
n ·

⇀

V
′
n +

⇀

ω′
n ·

↔
I′

n ·
⇀

ω′
n

)

U = Up +
6∑

n=1
Un + U ′

n = mpg
⇀

Rp ·
�

K +
6∑

n=1
mng

⇀

Rn ·
�

K + m′
ng

⇀

R′
n ·

�

K

(A3)

where mp, mn, and m′
n are the mass values of the moving platform, lower links, and upper links,

respectively.
⇀

Rp,
⇀

Rn,and
⇀

R′
n are the position vectors of the center of mass corresponding to the moving

platform, lower links, and upper links in the inertial frame, respectively. The linear velocity vectors
are derived in inertial frame as

⇀

Vp = ⇀̇

Rp,
⇀

Vn = ⇀̇

Rn,
⇀

V′
n = ⇀̇

R
′
n (A4)

Moreover,
⇀

ωp,
⇀

ωn, and
⇀

ω′
n are the angular velocity vectors of the moving platform, lower links, and

upper links in related body frames, respectively. The angular velocity vector of the moving platform
is obtained as follows:

� = ṘI
p(RI

p)T =
⎡
⎣ 0 −θ̇Sϕ − ψ̇ θ̇CϕCψ + ϕ̇Sψ

θ̇Sϕ + ψ̇ 0 θ̇CϕSψ − ϕ̇Cψ

−θ̇CϕCψ − ϕ̇Sψ ϕ̇Cψ − θ̇CϕSψ 0

⎤
⎦ ,

⇀

ω
Inertial frame

p = [
�3,2 �1,3 �2,1

]T

⇀

ω
Body frame

p = (RI
p)T ⇀

ω
Inertial frame

p = ⇀

ωp

(A5)

↔
I p,

↔
In, and

↔
I′

n are the dyadic of the Inertia moment of the moving platform, lower links, and upper
links in related body frames, respectively, and are obtained as

Ip =
⎡
⎣ Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤
⎦ , I′

n =
⎡
⎣I ′

xn 0 0
0 I ′

yn 0
0 0 I ′

zn

⎤
⎦ , In =

⎡
⎣Ixn 0 0

0 Iyn 0
0 0 Izn

⎤
⎦ (A6)

The generalized forces vector is

Qnc,i =
6∑

J=1

⇀

τ nc,J
∂

⇀
ωJ

∂ q̇i
i = 1, 2, . . . , 24

Qnc = [0, 0, 0, 0, 0, 0, τ1, τ2, τ3, τ4, τ5, τ6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T
(A7)

By substituting Eqs. (A3) and (A7) in Eq. (A1), the governing equations are obtained.
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